20 Aug, 2019, 11:00 AM
¿Podría tratarse de planetas interestelares (o intergalácticos) errantes, asteroides y cometas, ninguno de los cuales produce luz propia? Resulta difícil de creer que el universo produjera seis veces más masa en los planetas que en las estrellas. Esto querría decir 6 mil jupíteres por cada estrella en la galaxia o, peor aún, dos millones de tierras. En nuestro sistema solar, por ejemplo, todo aquello que no es el Sol suma menos de una quinta parte del 2% de la masa del Sol.
Más pruebas directas sobre la extraña naturaleza de la materia oscura provienen de la cantidad relativa de hidrógeno y helio en el universo. Juntas, estas cifras proporcionan una huella digital cósmica que dejó el universo temprano. En una aproximación cercana, la fusión nuclear durante los primeros minutos después del big bang produjo un núcleo de helio por cada diez núcleos de hidrógeno (que simplemente son protones). Los cálculos muestran que si la mayor parte de la materia oscura hubiera participado en la fusión nuclear, habría mucho más helio en relación con el hidrógeno en el universo. A partir de esto concluimos que la mayor parte de la materia oscura —por consiguiente, la mayor parte de la masa del universo— no participa en la fusión nuclear, lo que la descalifica como materia ordinaria, cuya esencia radica en su disposición a ser parte de las fuerzas atómicas y nucleares que dan forma a la materia tal y como la conocemos. Observaciones detalladas del fondo cósmico de microondas, que facilitan un examen independiente de esta conclusión, confirman el resultado: la materia oscura y la fusión nuclear no se mezclan.
Así, lo mejor que podemos suponer es que la materia oscura no consiste simplemente en materia que casualmente es oscura. En cambio, es algo completamente distinto. La materia oscura ejerce gravedad de acuerdo con las mismas reglas que sigue la materia ordinaria, pero hace muy poco más para permitirnos detectarla. Por supuesto, estamos atados de pies y manos en este análisis al no saber, en primer lugar, qué es la materia oscura. Si toda la masa tiene gravedad, ¿toda la gravedad tiene masa? No lo sabemos. Quizá no haya nada malo con la materia y lo que no entendamos sea la gravedad.
La discrepancia entre la materia oscura y la ordinaria varía significativamente de un ambiente astrofísico a otro, pero se vuelve más pronunciada en entidades grandes, como galaxias y cúmulos de galaxias. En los objetos más pequeños, como las lunas y los planetas, no existe tal discrepancia. La gravedad superficial de la Tierra, por ejemplo, puede explicarse completamente a través de las cosas que tenemos bajo los pies. Si tienes sobrepeso en la Tierra, no culpes a la materia oscura. La materia oscura tampoco tiene influencia sobre la órbita de la Luna alrededor de la Tierra ni sobre los movimientos de los planetas alrededor del Sol; pero, como ya hemos visto, sí la necesitamos para explicar los movimientos de las estrellas alrededor del centro de la galaxia
¿Acaso opera un tipo de física gravitacional diferente en la escala galáctica? Probablemente no. Es más posible que la materia oscura consista en materia cuya naturaleza aún debemos descubrir y que se acumula de forma más difusa de lo que lo hace la materia ordinaria. De lo contrario, detectaríamos la gravedad de trozos de materia oscura concentrada salpicando el universo: cometas de materia oscura, planetas de materia oscura, galaxias de materia oscura. Hasta donde sabemos, las cosas no son así.
Lo que sí sabemos es que la materia del universo que hemos llegado a amar —la materia de las estrellas, los planetas y la vida— es solo una delgada capa de betún en el pastel cósmico, sencillas boyas que flotan en un vasto océano cósmico de algo que parece nada.
Durante el primer medio millón de años después el big bang —un mero parpadeo en los 14 mil millones de años de historia cósmica—, la materia en el universo ya había comenzado a unificarse en masas amorfas que se convertirían en cúmulos y supercúmulos de galaxias. Pero el cosmos se duplicaría en tamaño durante el siguiente medio millón de años y continuaría creciendo. En el universo había dos efectos opuestos: la gravedad, que quiere hacer que las cosas se coagulen, y la expansión, que quiere diluirlas. Si haces las cuentas, rápidamente te percatarás de que la gravedad de la materia no podía ganar la batalla sola. Necesitaba la ayuda de la materia oscura, sin la cual estaríamos viviendo —en realidad no viviríamos— en un universo sin estructuras: sin cúmulos, sin galaxias, sin estrellas, sin planetas, sin gente.
¿Cuánta gravedad de la materia oscura necesitaba? Seis veces más de lo que proporcionaba la materia ordinaria. Justo la cantidad que medimos en el universo. Este análisis no nos dice lo que es la materia oscura, solo nos dice que los efectos de la materia oscura son reales y que, por más que lo intentes, no le puedes dar el crédito de ello a la materia ordinaria.
Así que la materia oscura es nuestra amienemiga. No tenemos ni idea de lo que es. Es algo molesta. Pero la necesitamos desesperadamente en nuestros cálculos para alcanzar una descripción precisa del universo. Los científicos generalmente nos sentimos incómodos cuando tenemos que basar nuestros cálculos en conceptos que no entendemos, pero lo hacemos si es necesario. Y la materia oscura no es el primer toro al que nos enfrentamos. En el siglo XIX, por ejemplo, los científicos midieron la energía que emite nuestro Sol y mostraron su efecto sobre nuestras estaciones y clima, mucho antes de que nadie supiera que la fusión termonuclear es la responsable de esa energía. En esos tiempos, las mejores ideas incluían la retrospectivamente ridícula idea de que el Sol era un trozo de carbón encendido. También en el siglo XIX observamos las estrellas, obtuvimos sus espectros y las clasificamos mucho antes de que se introdujera la física cuántica del siglo XX, que nos da nuestro entendimiento de cómo y por qué se ven así estos espectros.
Los escépticos sin remedio podrían comparar la materia oscura actual con el hipotético y hoy difunto éter propuesto en el siglo XIX como el medio ingrávido y transparente que se extiende en el vacío del espacio y a través del cual viajaba la luz. Hasta que un famoso experimento en 1887 —realizado por Albert Michelson y Edward Morley, en la Universidad Case Western Reserve, en Cleveland— mostró lo contrario, los científicos afirmaban que el éter debía existir, aunque ni siquiera había una pizca de evidencia que apoyara esta suposición. Igual que una onda, se creía que la luz necesitaba un medio a través del cual propagar su energía, de la misma forma en que el sonido necesita el aire o alguna otra sustancia para transmitir sus ondas. Pero resulta que la luz es muy feliz viajando por el vacío del espacio, carente de cualquier medio para llevarla. A diferencia de las ondas sonoras, que consisten en vibraciones de aire, se descubrió que las ondas de luz son paquetes de energía que se autopropagan sin necesidad de ningún tipo de ayuda.
La ignorancia sobre la materia oscura difiere sustancialmente de la ignorancia sobre el éter. El éter fue un marcador de posición de nuestro conocimiento incompleto, mientras que la existencia de la materia oscura proviene no de una mera presunción sino de los efectos de su gravedad observados sobre la materia visible. No estamos inventándonos la materia oscura; en cambio, dedujimos su existencia a partir de hechos observables. La materia oscura es tan real como lo son los muchos exoplanetas en órbita alrededor de otras estrellas además del Sol, descubiertos únicamente a través de su influencia gravitacional sobre sus estrellas anfitrionas y no por la medición directa de su luz.
Lo peor que podría pasar es que descubriéramos que la materia oscura no consiste en materia en absoluto, sino en otra cosa. ¿Podríamos estar presenciando los efectos de fuerzas de otra dimensión? ¿Estamos sintiendo la gravedad ordinaria de la materia ordinaria que atraviesa la membrana de un universo fantasma contiguo al nuestro? De ser así, este podría ser solo uno de una infinita diversidad de universos que integran el multiverso. Suena exótico e increíble, pero ¿es más descabellado que los primeros planteamientos de que la Tierra orbitaba al Sol?, ¿que el Sol es una de las 100 mil millones de estrellas de la Vía Láctea?, ¿o que la Vía Láctea es solo una de las 100 mil millones de galaxias del universo?
Incluso si alguno de estos fantásticos relatos fuera cierto, ninguno cambiaría el exitoso uso de la gravedad de la materia oscura en las ecuaciones que empleamos para entender la formación y evolución del universo.
Otros escépticos incansables podrían decir «ver para creer», una actitud ante la vida que funciona en muchos proyectos, incluyendo la ingeniería mecánica, la pesca y quizá incluso en citas románticas. Aparentemente también funciona en los lugares de Estados Unidos donde no se enseña la evolución. Pero no contribuye a crear buena ciencia. En la ciencia no solo se trata de ver, se trata de medir, de preferencia con algo que no sean nuestros propios ojos, que están inextricablemente ligados al bagaje de nuestro cerebro. Con frecuencia ese bagaje es una mochila con ideas preconcebidas, nociones posconcebidas y prejuicios puros y duros
Habiéndose resistido a los intentos de ser detectada directamente en la Tierra durante tres cuartos de siglo, la materia oscura sigue en el terreno de juego. Los físicos de partículas están convencidos de que la materia oscura consiste en un tipo de partículas fantasmales todavía sin descubrir que interactúan con la materia a través de la gravedad, pero que de otra forma interactúan con la materia o con la luz ligera o débilmente o que no lo hacen en absoluto. Si te gusta apostarle a la física, esta es una buena apuesta. El acelerador de partículas más grande del mundo está tratando de fabricar partículas de materia oscura en medio de los desechos de colisiones de partículas. Algunos laboratorios especialmente diseñados, ubicados a gran profundidad, intentan detectar partículas de materia oscura de forma pasiva, en caso de que llegaran desde el espacio. Una ubicación subterránea protege de forma natural las instalaciones de posibles partículas cósmicas conocidas que pudieran actuar como impostoras de materia oscura y que activaran los detectores.
Aunque esto podría parecer mucho ruido y pocas nueces, la idea de una materia oscura esquiva tiene precedentes. Los neutrinos, por ejemplo, se predijeron y fueron finalmente descubiertos, a pesar de que interactúan de forma extremadamente débil con la materia ordinaria. El abundante flujo de neutrinos desde el Sol —dos neutrinos por cada núcleo de helio se fusionaron a partir del hidrógeno en el núcleo termonuclear del Sol— sale del Sol, imperturbado por el Sol mismo, y viaja a través del vacío del espacio casi a la velocidad de la luz; luego pasa por la Tierra como si esta no existiera. El recuento: de noche y de día, cien mil millones de neutrinos del Sol pasan por cada centímetro cuadrado de tu cuerpo, cada segundo, sin dejar rastro de su interacción con los átomos de tu cuerpo. A pesar de ser esquivos, los neutrinos pueden ser detenidos en circunstancias especiales. Y si se puede detener a una partícula, la has detectado.
Las partículas de materia oscura pueden mostrarse a través de interacciones igualmente raras o, todavía más sorprendente, podrían manifestarse a través de fuerzas distintas a la fuerza nuclear fuerte, la fuerza nuclear débil y el electromagnetismo. Estas tres fuerzas más la gravedad integran las cuatro fuerzas fantásticas del universo que actúan como mediadoras de todas las interacciones, entre todas las partículas conocidas. Así que las opciones son claras. O bien las partículas de materia oscura deben esperar a que descubramos y controlemos una nueva fuerza o clase de fuerzas a través de las que interactúan, o las partículas de materia oscura interactúan a través de fuerzas normales, pero con asombrosa debilidad.
Así que los efectos de la materia oscura son reales. Simplemente no sabemos qué es. La materia oscura parece no interactuar a través de la fuerza nuclear fuerte, por lo que no puede hacer núcleos. No se ha descubierto si interactúa a través de la fuerza nuclear débil, algo que incluso los esquivos neutrinos hacen. No parece interactuar con la fuerza electromagnética, por lo que no hace moléculas y se concentra en densas bolas de materia oscura. Tampoco absorbe, emite, refleja o dispersa la luz. Como hemos sabido desde el principio, la materia oscura, efectivamente, sí ejerce gravedad, y la materia ordinaria responde a ella. Pero eso es todo lo que sabemos. Después de todos estos años, no hemos descubierto si hace algo más.
Por ahora debemos conformarnos con llevar a la materia oscura con nosotros, como a una extraña e invisible amiga, empleándola donde y cuando el universo nos lo pida
Neil deGrasse Tyson
Astrofísica para gente con prisas
Más pruebas directas sobre la extraña naturaleza de la materia oscura provienen de la cantidad relativa de hidrógeno y helio en el universo. Juntas, estas cifras proporcionan una huella digital cósmica que dejó el universo temprano. En una aproximación cercana, la fusión nuclear durante los primeros minutos después del big bang produjo un núcleo de helio por cada diez núcleos de hidrógeno (que simplemente son protones). Los cálculos muestran que si la mayor parte de la materia oscura hubiera participado en la fusión nuclear, habría mucho más helio en relación con el hidrógeno en el universo. A partir de esto concluimos que la mayor parte de la materia oscura —por consiguiente, la mayor parte de la masa del universo— no participa en la fusión nuclear, lo que la descalifica como materia ordinaria, cuya esencia radica en su disposición a ser parte de las fuerzas atómicas y nucleares que dan forma a la materia tal y como la conocemos. Observaciones detalladas del fondo cósmico de microondas, que facilitan un examen independiente de esta conclusión, confirman el resultado: la materia oscura y la fusión nuclear no se mezclan.
Así, lo mejor que podemos suponer es que la materia oscura no consiste simplemente en materia que casualmente es oscura. En cambio, es algo completamente distinto. La materia oscura ejerce gravedad de acuerdo con las mismas reglas que sigue la materia ordinaria, pero hace muy poco más para permitirnos detectarla. Por supuesto, estamos atados de pies y manos en este análisis al no saber, en primer lugar, qué es la materia oscura. Si toda la masa tiene gravedad, ¿toda la gravedad tiene masa? No lo sabemos. Quizá no haya nada malo con la materia y lo que no entendamos sea la gravedad.
La discrepancia entre la materia oscura y la ordinaria varía significativamente de un ambiente astrofísico a otro, pero se vuelve más pronunciada en entidades grandes, como galaxias y cúmulos de galaxias. En los objetos más pequeños, como las lunas y los planetas, no existe tal discrepancia. La gravedad superficial de la Tierra, por ejemplo, puede explicarse completamente a través de las cosas que tenemos bajo los pies. Si tienes sobrepeso en la Tierra, no culpes a la materia oscura. La materia oscura tampoco tiene influencia sobre la órbita de la Luna alrededor de la Tierra ni sobre los movimientos de los planetas alrededor del Sol; pero, como ya hemos visto, sí la necesitamos para explicar los movimientos de las estrellas alrededor del centro de la galaxia
¿Acaso opera un tipo de física gravitacional diferente en la escala galáctica? Probablemente no. Es más posible que la materia oscura consista en materia cuya naturaleza aún debemos descubrir y que se acumula de forma más difusa de lo que lo hace la materia ordinaria. De lo contrario, detectaríamos la gravedad de trozos de materia oscura concentrada salpicando el universo: cometas de materia oscura, planetas de materia oscura, galaxias de materia oscura. Hasta donde sabemos, las cosas no son así.
Lo que sí sabemos es que la materia del universo que hemos llegado a amar —la materia de las estrellas, los planetas y la vida— es solo una delgada capa de betún en el pastel cósmico, sencillas boyas que flotan en un vasto océano cósmico de algo que parece nada.
Durante el primer medio millón de años después el big bang —un mero parpadeo en los 14 mil millones de años de historia cósmica—, la materia en el universo ya había comenzado a unificarse en masas amorfas que se convertirían en cúmulos y supercúmulos de galaxias. Pero el cosmos se duplicaría en tamaño durante el siguiente medio millón de años y continuaría creciendo. En el universo había dos efectos opuestos: la gravedad, que quiere hacer que las cosas se coagulen, y la expansión, que quiere diluirlas. Si haces las cuentas, rápidamente te percatarás de que la gravedad de la materia no podía ganar la batalla sola. Necesitaba la ayuda de la materia oscura, sin la cual estaríamos viviendo —en realidad no viviríamos— en un universo sin estructuras: sin cúmulos, sin galaxias, sin estrellas, sin planetas, sin gente.
¿Cuánta gravedad de la materia oscura necesitaba? Seis veces más de lo que proporcionaba la materia ordinaria. Justo la cantidad que medimos en el universo. Este análisis no nos dice lo que es la materia oscura, solo nos dice que los efectos de la materia oscura son reales y que, por más que lo intentes, no le puedes dar el crédito de ello a la materia ordinaria.
Así que la materia oscura es nuestra amienemiga. No tenemos ni idea de lo que es. Es algo molesta. Pero la necesitamos desesperadamente en nuestros cálculos para alcanzar una descripción precisa del universo. Los científicos generalmente nos sentimos incómodos cuando tenemos que basar nuestros cálculos en conceptos que no entendemos, pero lo hacemos si es necesario. Y la materia oscura no es el primer toro al que nos enfrentamos. En el siglo XIX, por ejemplo, los científicos midieron la energía que emite nuestro Sol y mostraron su efecto sobre nuestras estaciones y clima, mucho antes de que nadie supiera que la fusión termonuclear es la responsable de esa energía. En esos tiempos, las mejores ideas incluían la retrospectivamente ridícula idea de que el Sol era un trozo de carbón encendido. También en el siglo XIX observamos las estrellas, obtuvimos sus espectros y las clasificamos mucho antes de que se introdujera la física cuántica del siglo XX, que nos da nuestro entendimiento de cómo y por qué se ven así estos espectros.
Los escépticos sin remedio podrían comparar la materia oscura actual con el hipotético y hoy difunto éter propuesto en el siglo XIX como el medio ingrávido y transparente que se extiende en el vacío del espacio y a través del cual viajaba la luz. Hasta que un famoso experimento en 1887 —realizado por Albert Michelson y Edward Morley, en la Universidad Case Western Reserve, en Cleveland— mostró lo contrario, los científicos afirmaban que el éter debía existir, aunque ni siquiera había una pizca de evidencia que apoyara esta suposición. Igual que una onda, se creía que la luz necesitaba un medio a través del cual propagar su energía, de la misma forma en que el sonido necesita el aire o alguna otra sustancia para transmitir sus ondas. Pero resulta que la luz es muy feliz viajando por el vacío del espacio, carente de cualquier medio para llevarla. A diferencia de las ondas sonoras, que consisten en vibraciones de aire, se descubrió que las ondas de luz son paquetes de energía que se autopropagan sin necesidad de ningún tipo de ayuda.
La ignorancia sobre la materia oscura difiere sustancialmente de la ignorancia sobre el éter. El éter fue un marcador de posición de nuestro conocimiento incompleto, mientras que la existencia de la materia oscura proviene no de una mera presunción sino de los efectos de su gravedad observados sobre la materia visible. No estamos inventándonos la materia oscura; en cambio, dedujimos su existencia a partir de hechos observables. La materia oscura es tan real como lo son los muchos exoplanetas en órbita alrededor de otras estrellas además del Sol, descubiertos únicamente a través de su influencia gravitacional sobre sus estrellas anfitrionas y no por la medición directa de su luz.
Lo peor que podría pasar es que descubriéramos que la materia oscura no consiste en materia en absoluto, sino en otra cosa. ¿Podríamos estar presenciando los efectos de fuerzas de otra dimensión? ¿Estamos sintiendo la gravedad ordinaria de la materia ordinaria que atraviesa la membrana de un universo fantasma contiguo al nuestro? De ser así, este podría ser solo uno de una infinita diversidad de universos que integran el multiverso. Suena exótico e increíble, pero ¿es más descabellado que los primeros planteamientos de que la Tierra orbitaba al Sol?, ¿que el Sol es una de las 100 mil millones de estrellas de la Vía Láctea?, ¿o que la Vía Láctea es solo una de las 100 mil millones de galaxias del universo?
Incluso si alguno de estos fantásticos relatos fuera cierto, ninguno cambiaría el exitoso uso de la gravedad de la materia oscura en las ecuaciones que empleamos para entender la formación y evolución del universo.
Otros escépticos incansables podrían decir «ver para creer», una actitud ante la vida que funciona en muchos proyectos, incluyendo la ingeniería mecánica, la pesca y quizá incluso en citas románticas. Aparentemente también funciona en los lugares de Estados Unidos donde no se enseña la evolución. Pero no contribuye a crear buena ciencia. En la ciencia no solo se trata de ver, se trata de medir, de preferencia con algo que no sean nuestros propios ojos, que están inextricablemente ligados al bagaje de nuestro cerebro. Con frecuencia ese bagaje es una mochila con ideas preconcebidas, nociones posconcebidas y prejuicios puros y duros
Habiéndose resistido a los intentos de ser detectada directamente en la Tierra durante tres cuartos de siglo, la materia oscura sigue en el terreno de juego. Los físicos de partículas están convencidos de que la materia oscura consiste en un tipo de partículas fantasmales todavía sin descubrir que interactúan con la materia a través de la gravedad, pero que de otra forma interactúan con la materia o con la luz ligera o débilmente o que no lo hacen en absoluto. Si te gusta apostarle a la física, esta es una buena apuesta. El acelerador de partículas más grande del mundo está tratando de fabricar partículas de materia oscura en medio de los desechos de colisiones de partículas. Algunos laboratorios especialmente diseñados, ubicados a gran profundidad, intentan detectar partículas de materia oscura de forma pasiva, en caso de que llegaran desde el espacio. Una ubicación subterránea protege de forma natural las instalaciones de posibles partículas cósmicas conocidas que pudieran actuar como impostoras de materia oscura y que activaran los detectores.
Aunque esto podría parecer mucho ruido y pocas nueces, la idea de una materia oscura esquiva tiene precedentes. Los neutrinos, por ejemplo, se predijeron y fueron finalmente descubiertos, a pesar de que interactúan de forma extremadamente débil con la materia ordinaria. El abundante flujo de neutrinos desde el Sol —dos neutrinos por cada núcleo de helio se fusionaron a partir del hidrógeno en el núcleo termonuclear del Sol— sale del Sol, imperturbado por el Sol mismo, y viaja a través del vacío del espacio casi a la velocidad de la luz; luego pasa por la Tierra como si esta no existiera. El recuento: de noche y de día, cien mil millones de neutrinos del Sol pasan por cada centímetro cuadrado de tu cuerpo, cada segundo, sin dejar rastro de su interacción con los átomos de tu cuerpo. A pesar de ser esquivos, los neutrinos pueden ser detenidos en circunstancias especiales. Y si se puede detener a una partícula, la has detectado.
Las partículas de materia oscura pueden mostrarse a través de interacciones igualmente raras o, todavía más sorprendente, podrían manifestarse a través de fuerzas distintas a la fuerza nuclear fuerte, la fuerza nuclear débil y el electromagnetismo. Estas tres fuerzas más la gravedad integran las cuatro fuerzas fantásticas del universo que actúan como mediadoras de todas las interacciones, entre todas las partículas conocidas. Así que las opciones son claras. O bien las partículas de materia oscura deben esperar a que descubramos y controlemos una nueva fuerza o clase de fuerzas a través de las que interactúan, o las partículas de materia oscura interactúan a través de fuerzas normales, pero con asombrosa debilidad.
Así que los efectos de la materia oscura son reales. Simplemente no sabemos qué es. La materia oscura parece no interactuar a través de la fuerza nuclear fuerte, por lo que no puede hacer núcleos. No se ha descubierto si interactúa a través de la fuerza nuclear débil, algo que incluso los esquivos neutrinos hacen. No parece interactuar con la fuerza electromagnética, por lo que no hace moléculas y se concentra en densas bolas de materia oscura. Tampoco absorbe, emite, refleja o dispersa la luz. Como hemos sabido desde el principio, la materia oscura, efectivamente, sí ejerce gravedad, y la materia ordinaria responde a ella. Pero eso es todo lo que sabemos. Después de todos estos años, no hemos descubierto si hace algo más.
Por ahora debemos conformarnos con llevar a la materia oscura con nosotros, como a una extraña e invisible amiga, empleándola donde y cuando el universo nos lo pida
Neil deGrasse Tyson
Astrofísica para gente con prisas