20 Aug, 2019, 11:20 AM
6 ENERGÍA OSCURA
COMO SI NO TUVIERAS suficientes cosas de que preocuparte, en décadas recientes se descubrió que el universo ejerce una misteriosa presión que sale del vacío del espacio y que actúa contra la gravedad cósmica. Y no es solo eso, esta gravedad negativa al final ganará en el tira y afloja, conforme obliga la expansión cósmica para acelerarnos exponencialmente hacia el futuro.
La mayoría de las ideas alucinantes de la física del siglo XX se pueden adjudicar a Einstein. Albert Einstein apenas pisó un laboratorio; no probó fenómenos ni utilizó equipos complicados. Él era un teórico que perfeccionó el experimento mental, en el que interactúas con la naturaleza a través de tu imaginación, inventando una situación o un modelo y llegando a las consecuencias de algún principio físico. Antes de la Segunda Guerra Mundial, para la mayoría de los científicos arios en Alemania, la física de laboratorio superaba por mucho la física teórica. Como humildes teóricos, los físicos judíos fueron todos relegados a la mesa de los niños. Pero no sabían lo que pasaría en esa mesa.
Como fue el caso de Einstein, si un modelo de un físico pretende representar al universo entero, entonces manipular el modelo debe equivaler a manipular el universo mismo. Los observadores y los experimentadores pueden salir a buscar los fenómenos predichos por ese modelo. Si el modelo es imperfecto o si los teóricos cometen un error en sus cálculos, los observadores descubrirán una discrepancia entre las predicciones del modelo y la manera en que las cosas ocurren en el universo real. Esa es la primera señal para que un teórico vuelva a empezar de cero, ya sea ajustando el viejo modelo o creando uno nuevo.
Uno de los modelos teóricos más poderosos y de mayor alcance jamás concebido, ya presentado en estas páginas, es la teoría general de la relatividad de Einstein, llamada TGR por los expertos que son perezosos con la lengua. La TGR fue publicada en 1916 y resume los datos matemáticos relevantes sobre cómo se mueve todo en el universo bajo la influencia de la gravedad. Cada cierto tiempo, los científicos de laboratorio diseñan experimentos y amplían los límites de la precisión de la teoría. Un moderno ejemplo de este impresionante conocimiento de la naturaleza que Einstein nos ha regalado viene de 2016, cuando se descubrieron ondas gravitacionales en un observatorio especialmente diseñado que se sintonizó únicamente con este propósito[7]. Estas ondas, predichas por Einstein, son ondulaciones que se mueven a la velocidad de la luz, a través del tejido del espacio-tiempo, y son generadas por severas perturbaciones gravitacionales, como la colisión de dos agujeros negros.
Eso es exactamente lo que se observó. Las ondas gravitacionales de la primera detección fueron generadas por una colisión de agujeros negros en una galaxia a 1.300 millones de años luz de distancia, cuando la Tierra estaba repleta de sencillos organismos unicelulares. Mientras la ondulación se movía en todas direcciones por el espacio, 800 millones de años después, la Tierra desarrollaría vida compleja, incluyendo flores, dinosaurios y criaturas voladoras, así como una rama de vertebrados llamados mamíferos. Entre los mamíferos, una subrama desarrollaría lóbulos frontales y pensamiento complejo. Los llamamos primates. Una sola rama de estos primates desarrollaría una mutación genética que les permitiría hablar, y esa rama, el Homo sapiens, inventaría la agricultura, la civilización, la filosofía, el arte y la ciencia. Todo ello ocurrió en los últimos 10 mil años. Finalmente, uno de sus científicos del siglo XX inventaría la relatividad y predeciría la existencia de ondas gravitacionales. Un siglo más tarde, la tecnología capaz de ver estas ondas al fin existiría, pocos días antes de que esa onda de gravedad, que había estado viajando por 1.300 millones de años, llegara a la Tierra y fuera detectada.
Sí, Einstein era un tipo tremendo.
Cuando se proponen por primera vez, la mayoría de los modelos científicos están desarrollados a medias y tienen márgenes para ajustar parámetros de modo que encajen mejor en el universo conocido. En el universo heliocéntrico, o basado en el Sol, concebido por el matemático del siglo XVI Nicolás Copérnico, los planetas orbitaban en círculos perfectos. La parte sobre orbitar el Sol era correcta, además de un avance importante con respecto al universo basado en la Tierra, o geocéntrico; pero la parte del círculo perfecto resultó estar un poco equivocada, pues todos los planetas orbitan el Sol en círculos aplanados llamados elipses, e incluso esa forma es solo una aproximación de una trayectoria más compleja. La idea básica de Copérnico era correcta, y eso es lo más importante. Simplemente necesitaba unos cuantos pequeños ajustes para hacerla más exacta.
Sin embargo, en el caso de la relatividad de Einstein, los principios fundamentales de toda la teoría requieren que las cosas ocurran exactamente como se predice. Einstein, en efecto, había construido lo que por fuera parece un castillo de arena, con solo dos o tres simples postulados para sostener toda la estructura. De hecho, al enterarse de un libro de 1931 titulado One Hundred Authors Against Einstein [Cien autores contra Einstein[8]], respondió que si él estaba equivocado, hubiera bastado con uno solo de ellos.
Ahí se sembraron las semillas de una de las metidas de pata más fascinantes de la historia de la ciencia. Las nuevas ecuaciones de gravedad de Einstein incluían un término al que él llamó constante cosmológica, que representaba con la letra griega lambda, Λ, en mayúscula. Al ser un término matemáticamente permitido, pero opcional, la constante cosmológica le permitió representar un universo estático.
En aquel entonces, la idea de que nuestro universo estuviera haciendo cualquier cosa además de simplemente existir no se le ocurría a nadie. Así que la única función de lambda era oponerse a la gravedad en el modelo de Einstein, manteniendo el universo en equilibrio y resistiendo la tendencia natural de la gravedad a arrastrar al universo y convertirlo en una gigantesca masa. Así, Einstein inventó un universo que ni se expande ni se contrae, coherente con las expectativas de todos.
Más tarde, el físico ruso Alexander Friedmann mostraría que, matemáticamente, el universo de Einstein, aunque equilibrado, se encontraba en un estado inestable. Como una pelota sobre la cima de una colina, esperando la menor provocación para rodar en una dirección o en otra, o como un lápiz balanceándose sobre su afilada punta, el universo de Einstein estaba posado precariamente entre un estado de expansión y otro de colapso total. Además, la teoría de Einstein era nueva, y no por darle un nombre a algo, ese algo se vuelve real: Einstein sabía que lambda, al ser una fuerza de gravedad negativa de la naturaleza, no tenía una contraparte conocida en el universo físico.
La teoría general de la relatividad de Einstein se apartaba radicalmente de todas las ideas anteriores sobre la atracción gravitacional. En vez de conformarse con la visión de la gravedad de sir Isaac Newton como una fantasmagórica acción a distancia (conclusión que ponía incómodo al mismo Newton), la TGR considera la gravedad como la respuesta de una masa a la curvatura local del espacio y el tiempo causada por alguna otra masa o campo de energía. En otras palabras, las concentraciones de masa provocan distorsiones, hoyuelos en realidad, en el tejido del espacio-tiempo. Estas distorsiones guían a las masas en movimiento en trayectorias geodésicas[9], aunque para nosotros parecen las trayectorias curvas que llamamos órbitas. El físico teórico estadounidense del siglo XX John Archibald Wheeler lo expresó de mejor forma, resumiendo el concepto de Einstein como «La materia le dice al espacio cómo curvarse; el espacio le dice a la materia cómo moverse[10]».
A fin de cuentas, la relatividad general describía dos tipos de gravedad. Una de ellas es del tipo conocido, como la atracción entre la Tierra y una pelota lanzada al aire, o entre el Sol y los planetas. También predijo otra clase de gravedad, una misteriosa presión antigravedad asociada con el vacío del espacio-tiempo mismo. Lambda conservó lo que Einstein y todos los otros físicos de su época firmemente suponían que era verdad: el statu quo de un universo estático, un inestable universo estático. Citar una condición inestable como el estado natural de un sistema físico viola el credo científico. No se puede afirmar que todo el universo sea un caso especial que casualmente está equilibrado por siempre. En la historia de la ciencia, nada visto, medido o imaginado jamás se ha comportado así, y ese es un precedente contundente.
Trece años después, en 1929, el astrofísico estadounidense Edwin P. Hubble descubrió que el universo no es estático. Había encontrado y reunido pruebas convincentes de que cuanto más distante es una galaxia, más rápidamente retrocede de la Vía Láctea. En otras palabras, el universo se está expandiendo. Avergonzado a causa de la constante cosmológica, que no correspondía a ninguna fuerza conocida de la naturaleza, y habiendo perdido la oportunidad de predecir él mismo la expansión del universo, Einstein descartó lambda por completo y la llamó la metida de pata más grande de su vida. Al arrancar a lambda de la ecuación, supuso que su valor sería cero, tal como en este ejemplo: supón que A = B + C. Si luego te enteras de que A = 10 y B = 10, entonces A sigue siendo igual a B más C, excepto en el caso de que C sea igual a 0 y se vuelva innecesaria en la ecuación.
Pero ese no fue el fin de la historia. Esporádicamente, a lo largo de las décadas, los teóricos sacarían a lambda de la cripta para imaginar cómo se verían sus ideas en un universo que tuviera una constante cosmológica. Sesenta y nueve años más tarde, en 1998, la ciencia exhumaría a lambda una última vez. A principios de ese año, dos distintos equipos de astrofísicos hicieron extraordinarios comunicados, uno de ellos estaba dirigido por Saul Perlmutter del Laboratorio Nacional Lawrence Berkeley, en Berkeley, California. El segundo equipo estaba codirigido por Brian Schmidt, de los observatorios Monte Stromlo y Siding Spring, en Canberra, Australia, y por Adam Riess de la Universidad Johns Hopkins, en Baltimore, Maryland. Decenas de las supernovas más lejanas jamás observadas parecían considerablemente más tenues de lo esperado, dado el comportamiento bien documentado de esta especie de estrellas que explotan. La conciliación exigía que esas lejanas supernovas se comportaran de forma distinta a sus compañeras más cercanas o bien que estuvieran hasta un 15% más lejos de lo que los modelos cosmológicos imperantes las habían ubicado. La única cosa conocida que explica de forma natural esta aceleración es la lambda de Einstein, la constante cosmológica. Cuando los astrofísicos la desempolvaron y la devolvieron a las ecuaciones originales de Einstein de la relatividad general, el estado conocido del universo coincidía con el estado de las ecuaciones de Einstein.
Las supernovas utilizadas en los estudios de Perlmutter y Schmidt valen su peso en núcleos fusionables. Dentro de ciertos límites, cada una de esas estrellas explota de la misma forma, encendiendo la misma cantidad de combustible, liberando la misma titánica cantidad de energía en el mismo tiempo, alcanzando así la misma luminosidad máxima. Por lo tanto, sirven como referencia, o candela estándar, para calcular las distancias cósmicas a las galaxias en las que explotan, en los confines más lejanos del universo.
Las candelas estándar simplifican inmensamente los cálculos: debido a que todas las supernovas tienen la misma potencia, las tenues están muy lejos y las brillantes están cerca. Después de medir su brillo (una tarea sencilla), puedes saber exactamente cuán lejos están unas de otras y de ti. Si las luminosidades de las supernovas fueran todas distintas, no podrías usar el brillo por sí solo para saber a qué distancia está una en comparación con otra. Una tenue podría ser un foco de alto voltaje lejano o bien un foco de bajo voltaje cercano.
Todo bien. Pero hay una segunda manera de medir la distancia a las galaxias: su velocidad de recesión de nuestra Vía Láctea, recesión que es parte integral de la expansión cósmica total. Hubble fue el primero en indicar que el universo en expansión hace que los objetos distantes se alejen más rápido de nosotros que los cercanos. Así que al medir la velocidad de recesión de una galaxia (otra sencilla tarea), se puede deducir la distancia de una galaxia.
Si estos dos métodos probados proporcionan distancias diferentes para el mismo objeto, algo debe andar mal. O las supernovas son malas candelas estándar o bien nuestro modelo para la tasa de expansión cósmica medida a través de las velocidades de las galaxias es incorrecto.
Pues sí, algo andaba mal. Resulta que las supernovas eran estupendas candelas estándar que sobrevivieron al cuidadoso escrutinio de muchos escépticos investigadores, así que los astrofísicos se quedaron con un universo que se había expandido más rápido de lo que pensábamos, ubicando las galaxias más lejos de lo que hubiera indicado su velocidad de recesión. Además, no había una manera fácil de explicar la expansión extra sin aplicar lambda, la constante cosmológica de Einstein.
Esta era la primera evidencia directa de que una fuerza repulsiva penetraba el universo, oponiéndose a la gravedad, razón por la que la constante cosmología resucitó de entre los muertos. De pronto lambda adquirió una realidad física que necesitaba un nombre, y así la energía oscura se volvió protagonista del drama cósmico, captando tanto el misterio de su causa como nuestra ignorancia sobre esta. Perlmutter, Schmidt y Riess, justificadamente, compartieron el Premio Nobel de física de 2011 por este descubrimiento. Las mediciones más exactas hasta ahora revelan que la energía oscura es lo más importante del mundo, al ser en este momento responsable del 68% de toda la masa-energía en el universo; la materia oscura comprende el 27%, y la materia normal comprende apenas el 5%.
La forma de nuestro universo cuatridimensional viene de la relación entre la cantidad de materia y energía que vive en el cosmos y la velocidad a la que el cosmos se expande. Una medida matemática práctica de esto es omega, Ω, otra letra griega mayúscula con un buen dominio del cosmos.
Si divides la densidad de la materia-energía del universo entre la densidad de la materia-energía requerida para apenas detener la expansión (conocida como la densidad crítica), obtienes omega.
Dado que tanto la masa como la energía hacen que el espacio-tiempo se deforme o curve, omega nos dice la forma del cosmos. Si omega es menor a uno, la energía-masa real cae por debajo del valor crítico, y el universo se expande por siempre en todas las direcciones, todo el tiempo, adoptando la forma de una silla de montar, en la que las líneas inicialmente paralelas divergen. Si omega es igual a uno, el universo se expande por siempre, pero apenas lo hace. En ese caso, la forma es plana y conserva todas las reglas geométricas que aprendimos en la secundaria sobre las líneas paralelas. Si omega es superior a uno, las líneas paralelas convergen, y el universo se curva sobre sí mismo, volviendo finalmente a colapsarse en la bola de fuego de donde vino.
Desde que Hubble descubrió el universo en expansión no ha habido ningún equipo de observadores que haya medido a omega siquiera cerca de uno de forma confiable. Sumando toda la masa y energía que sus telescopios podían ver, e incluso extrapolando más allá de estos límites, incluyendo la materia oscura, los valores más altos de las mejores observaciones alcanzaron un máximo de alrededor de Ω = 0,3. En lo que a los observadores respecta, el universo seguiría trabajando incansablemente hacia el futuro.
Mientras tanto, a partir de 1979, el físico estadounidense Alan H. Guth, del Instituto de Tecnología de Massachusetts, y otros más presentaron un ajuste a la teoría del big bang que aclaró algunos molestos problemas que impedían obtener un universo lleno de materia y energía como se sabe que es el nuestro. Un subproducto fundamental de esta actualización del big bang fue que lleva a omega hacia uno. No hacia una mitad. No hacia dos. No hacia un millón. Hacia uno.
Difícilmente existe un teórico en el mundo que haya tenido un problema con este requisito, pues ayudó a que el big bang explicara las propiedades globales del universo conocido. Sin embargo, había otro pequeño problema: la actualización predijo tres veces más masa-energía de lo que los observadores pudieron encontrar. Sin inmutarse, los teóricos dijeron que los observadores no estaban buscando bien.
Al final de los cálculos, la materia visible por sí sola podía justificar no más de un 5% de la densidad crítica. Pero ¿qué hay de la misteriosa materia oscura? También la añadieron. Nadie sabía lo que era, y aún no lo sabemos, pero sin duda contribuyó al resultado final. A partir de ahí, obtenemos cinco o seis veces más materia oscura que visible. Pero eso es todavía muy poco. Los observadores estaban desconcertados, y los teóricos respondieron: «Sigan buscando».
Ambos grupos estaban seguros de que el otro estaba equivocado, hasta que se descubrió la energía oscura. Ese sencillo componente, al añadirse a la materia ordinaria y a la energía ordinaria y a la materia oscura, aumentó la densidad de masa-energía del universo a un nivel crítico. Esto satisfizo simultáneamente tanto a los observadores como a los teóricos.
Por primera vez, los teóricos y los observadores hicieron las paces. Ambos, a su propia manera, estaban en lo correcto. Omega sí es igual a uno, tal como los teóricos exigían del universo, a pesar de que no se puede llegar a ello sumando toda la materia, oscura o no, tal como ingenuamente habían supuesto. No hay más materia dando vueltas por el cosmos actualmente que la que antes habían estimado los observadores.
Nadie había previsto la dominante presencia de la energía cósmica oscura ni nadie había imaginado que fuera una gran reconciliadora de diferencias Entonces, ¿qué es? Nadie lo sabe. Lo más cerca que alguien ha estado de saberlo es suponer que la energía oscura es un efecto cuántico en el que el vacío del espacio, en vez de estar vacío, en realidad hierve de partículas y sus contrapartes antimateria. Aparecen y desaparecen en parejas, y no duran lo suficiente para medirlas. Su nombre, partículas virtuales, capta su existencia pasajera. El extraordinario legado de la física cuántica, la ciencia de lo pequeño, exige que pongamos especial atención a esta idea. Cada par de partículas virtuales ejerce un poco de presión hacia afuera mientras brevemente se abre paso a codazos en el espacio.
Desafortunadamente, cuando calculas la cantidad repulsiva de presión del vacío que surge de la corta vida de las partículas virtuales, el resultado es más de 10120 veces mayor que el valor de la constante cosmológica calculada experimentalmente. Se trata de un factor estúpidamente grande, que produce la mayor discrepancia en la historia de la ciencia entre la teoría y la observación.
Es verdad, no tenemos ni idea. Pero no estamos completamente perdidos. La energía oscura no está a la deriva, sin ninguna teoría que la ancle. La energía oscura habita uno de los puertos más seguros que podríamos imaginar: las ecuaciones de la relatividad general de Einstein. Es la constante cosmológica. Es lambda. Sin importar lo que la energía oscura resulte ser, ya sabemos cómo medirla y cómo calcular sus efectos sobre el pasado, el presente y el futuro del cosmos.
Sin duda, la mayor metida de pata de Einstein fue haber declarado que lambda había sido su mayor metida de pata.
Y la búsqueda continúa. Ahora que sabemos que la energía oscura es real, varios equipos de astrofísicos han iniciado ambiciosos programas para medir distancias y el crecimiento de la estructura en el universo utilizando telescopios terrestres y espaciales. Estas observaciones pondrán a prueba la detallada influencia de la energía oscura en la historia de la expansión del universo, y seguramente mantendrán ocupados a los teóricos. Deben redimirse urgentemente por lo vergonzoso que resultó ser su cálculo de la energía oscura.
¿Necesitamos una alternativa para la TGR? ¿Necesita una reestructuración el matrimonio de la TGR y la mecánica cuántica? ¿O existe alguna teoría de la energía oscura que será descubierta por una persona inteligente que aún no ha nacido?
Una característica extraordinaria de lambda y del universo en aceleración es que la fuerza repulsiva surge de dentro del vacío y no de algo material. Conforme el vacío crece, la densidad de la materia y la energía (conocida) dentro del universo disminuye, y la influencia relativa de lambda en el estado cósmico de las cosas se vuelve mayor. Con una presión repulsiva mayor viene más vacío, y con más vacío viene una mayor presión repulsiva, produciendo una aceleración interminable y exponencial de la expansión cósmica.
Como consecuencia, cualquier cosa que no esté gravitacionalmente ligada al vecindario de nuestra galaxia, la Vía Láctea, retrocederá a una velocidad cada vez mayor, como parte de la expansión acelerada del tejido espacio-tiempo. Las galaxias distantes que ahora son visibles en el cielo nocturno, con el tiempo desaparecerán más allá de un horizonte inalcanzable, alejándose de nosotros más rápido que la velocidad de la luz. Una hazaña posible, no porque estén moviéndose en el espacio a esas velocidades, sino porque la estructura del universo mismo las lleva a tales velocidades. No hay ninguna ley de la física que impida esto.
En alrededor de un billón de años, cualquier persona viva en nuestra galaxia podría no saber nada sobre otras galaxias. Nuestro universo observable apenas comprenderá un sistema de estrellas cercanas y longevas dentro de la Vía Láctea. Y más allá de una noche estrellada habrá un interminable vacío, oscuridad frente al abismo.
En última instancia, la energía oscura, una propiedad fundamental del cosmos, pondrá en peligro la capacidad de futuras generaciones de entender el universo que les tocó en el juego de cartas. A menos que los astrofísicos contemporáneos de la galaxia mantengan registros extraordinarios y entierren una impresionante cápsula del tiempo de un billón de años, los científicos posapocalípticos no sabrán nada sobre las galaxias —la principal forma de organización de la materia en nuestro cosmos—, y por ende se les negará el acceso a las páginas clave del drama cósmico de nuestro universo.
He aquí mi pesadilla recurrente: ¿Acaso a nosotros también nos hacen falta algunas piezas básicas del universo que alguna vez fuimos? ¿qué parte del libro de historia cósmica ha sido marcada con «acceso denegado»?, ¿qué sigue faltando en nuestras teorías y ecuaciones que debería estar ahí y que nos tiene buscando respuestas a tientas que tal vez nunca encontremos?
Neil deGrasse Tyson
Astrofísica para gente con prisas
COMO SI NO TUVIERAS suficientes cosas de que preocuparte, en décadas recientes se descubrió que el universo ejerce una misteriosa presión que sale del vacío del espacio y que actúa contra la gravedad cósmica. Y no es solo eso, esta gravedad negativa al final ganará en el tira y afloja, conforme obliga la expansión cósmica para acelerarnos exponencialmente hacia el futuro.
La mayoría de las ideas alucinantes de la física del siglo XX se pueden adjudicar a Einstein. Albert Einstein apenas pisó un laboratorio; no probó fenómenos ni utilizó equipos complicados. Él era un teórico que perfeccionó el experimento mental, en el que interactúas con la naturaleza a través de tu imaginación, inventando una situación o un modelo y llegando a las consecuencias de algún principio físico. Antes de la Segunda Guerra Mundial, para la mayoría de los científicos arios en Alemania, la física de laboratorio superaba por mucho la física teórica. Como humildes teóricos, los físicos judíos fueron todos relegados a la mesa de los niños. Pero no sabían lo que pasaría en esa mesa.
Como fue el caso de Einstein, si un modelo de un físico pretende representar al universo entero, entonces manipular el modelo debe equivaler a manipular el universo mismo. Los observadores y los experimentadores pueden salir a buscar los fenómenos predichos por ese modelo. Si el modelo es imperfecto o si los teóricos cometen un error en sus cálculos, los observadores descubrirán una discrepancia entre las predicciones del modelo y la manera en que las cosas ocurren en el universo real. Esa es la primera señal para que un teórico vuelva a empezar de cero, ya sea ajustando el viejo modelo o creando uno nuevo.
Uno de los modelos teóricos más poderosos y de mayor alcance jamás concebido, ya presentado en estas páginas, es la teoría general de la relatividad de Einstein, llamada TGR por los expertos que son perezosos con la lengua. La TGR fue publicada en 1916 y resume los datos matemáticos relevantes sobre cómo se mueve todo en el universo bajo la influencia de la gravedad. Cada cierto tiempo, los científicos de laboratorio diseñan experimentos y amplían los límites de la precisión de la teoría. Un moderno ejemplo de este impresionante conocimiento de la naturaleza que Einstein nos ha regalado viene de 2016, cuando se descubrieron ondas gravitacionales en un observatorio especialmente diseñado que se sintonizó únicamente con este propósito[7]. Estas ondas, predichas por Einstein, son ondulaciones que se mueven a la velocidad de la luz, a través del tejido del espacio-tiempo, y son generadas por severas perturbaciones gravitacionales, como la colisión de dos agujeros negros.
Eso es exactamente lo que se observó. Las ondas gravitacionales de la primera detección fueron generadas por una colisión de agujeros negros en una galaxia a 1.300 millones de años luz de distancia, cuando la Tierra estaba repleta de sencillos organismos unicelulares. Mientras la ondulación se movía en todas direcciones por el espacio, 800 millones de años después, la Tierra desarrollaría vida compleja, incluyendo flores, dinosaurios y criaturas voladoras, así como una rama de vertebrados llamados mamíferos. Entre los mamíferos, una subrama desarrollaría lóbulos frontales y pensamiento complejo. Los llamamos primates. Una sola rama de estos primates desarrollaría una mutación genética que les permitiría hablar, y esa rama, el Homo sapiens, inventaría la agricultura, la civilización, la filosofía, el arte y la ciencia. Todo ello ocurrió en los últimos 10 mil años. Finalmente, uno de sus científicos del siglo XX inventaría la relatividad y predeciría la existencia de ondas gravitacionales. Un siglo más tarde, la tecnología capaz de ver estas ondas al fin existiría, pocos días antes de que esa onda de gravedad, que había estado viajando por 1.300 millones de años, llegara a la Tierra y fuera detectada.
Sí, Einstein era un tipo tremendo.
Cuando se proponen por primera vez, la mayoría de los modelos científicos están desarrollados a medias y tienen márgenes para ajustar parámetros de modo que encajen mejor en el universo conocido. En el universo heliocéntrico, o basado en el Sol, concebido por el matemático del siglo XVI Nicolás Copérnico, los planetas orbitaban en círculos perfectos. La parte sobre orbitar el Sol era correcta, además de un avance importante con respecto al universo basado en la Tierra, o geocéntrico; pero la parte del círculo perfecto resultó estar un poco equivocada, pues todos los planetas orbitan el Sol en círculos aplanados llamados elipses, e incluso esa forma es solo una aproximación de una trayectoria más compleja. La idea básica de Copérnico era correcta, y eso es lo más importante. Simplemente necesitaba unos cuantos pequeños ajustes para hacerla más exacta.
Sin embargo, en el caso de la relatividad de Einstein, los principios fundamentales de toda la teoría requieren que las cosas ocurran exactamente como se predice. Einstein, en efecto, había construido lo que por fuera parece un castillo de arena, con solo dos o tres simples postulados para sostener toda la estructura. De hecho, al enterarse de un libro de 1931 titulado One Hundred Authors Against Einstein [Cien autores contra Einstein[8]], respondió que si él estaba equivocado, hubiera bastado con uno solo de ellos.
Ahí se sembraron las semillas de una de las metidas de pata más fascinantes de la historia de la ciencia. Las nuevas ecuaciones de gravedad de Einstein incluían un término al que él llamó constante cosmológica, que representaba con la letra griega lambda, Λ, en mayúscula. Al ser un término matemáticamente permitido, pero opcional, la constante cosmológica le permitió representar un universo estático.
En aquel entonces, la idea de que nuestro universo estuviera haciendo cualquier cosa además de simplemente existir no se le ocurría a nadie. Así que la única función de lambda era oponerse a la gravedad en el modelo de Einstein, manteniendo el universo en equilibrio y resistiendo la tendencia natural de la gravedad a arrastrar al universo y convertirlo en una gigantesca masa. Así, Einstein inventó un universo que ni se expande ni se contrae, coherente con las expectativas de todos.
Más tarde, el físico ruso Alexander Friedmann mostraría que, matemáticamente, el universo de Einstein, aunque equilibrado, se encontraba en un estado inestable. Como una pelota sobre la cima de una colina, esperando la menor provocación para rodar en una dirección o en otra, o como un lápiz balanceándose sobre su afilada punta, el universo de Einstein estaba posado precariamente entre un estado de expansión y otro de colapso total. Además, la teoría de Einstein era nueva, y no por darle un nombre a algo, ese algo se vuelve real: Einstein sabía que lambda, al ser una fuerza de gravedad negativa de la naturaleza, no tenía una contraparte conocida en el universo físico.
La teoría general de la relatividad de Einstein se apartaba radicalmente de todas las ideas anteriores sobre la atracción gravitacional. En vez de conformarse con la visión de la gravedad de sir Isaac Newton como una fantasmagórica acción a distancia (conclusión que ponía incómodo al mismo Newton), la TGR considera la gravedad como la respuesta de una masa a la curvatura local del espacio y el tiempo causada por alguna otra masa o campo de energía. En otras palabras, las concentraciones de masa provocan distorsiones, hoyuelos en realidad, en el tejido del espacio-tiempo. Estas distorsiones guían a las masas en movimiento en trayectorias geodésicas[9], aunque para nosotros parecen las trayectorias curvas que llamamos órbitas. El físico teórico estadounidense del siglo XX John Archibald Wheeler lo expresó de mejor forma, resumiendo el concepto de Einstein como «La materia le dice al espacio cómo curvarse; el espacio le dice a la materia cómo moverse[10]».
A fin de cuentas, la relatividad general describía dos tipos de gravedad. Una de ellas es del tipo conocido, como la atracción entre la Tierra y una pelota lanzada al aire, o entre el Sol y los planetas. También predijo otra clase de gravedad, una misteriosa presión antigravedad asociada con el vacío del espacio-tiempo mismo. Lambda conservó lo que Einstein y todos los otros físicos de su época firmemente suponían que era verdad: el statu quo de un universo estático, un inestable universo estático. Citar una condición inestable como el estado natural de un sistema físico viola el credo científico. No se puede afirmar que todo el universo sea un caso especial que casualmente está equilibrado por siempre. En la historia de la ciencia, nada visto, medido o imaginado jamás se ha comportado así, y ese es un precedente contundente.
Trece años después, en 1929, el astrofísico estadounidense Edwin P. Hubble descubrió que el universo no es estático. Había encontrado y reunido pruebas convincentes de que cuanto más distante es una galaxia, más rápidamente retrocede de la Vía Láctea. En otras palabras, el universo se está expandiendo. Avergonzado a causa de la constante cosmológica, que no correspondía a ninguna fuerza conocida de la naturaleza, y habiendo perdido la oportunidad de predecir él mismo la expansión del universo, Einstein descartó lambda por completo y la llamó la metida de pata más grande de su vida. Al arrancar a lambda de la ecuación, supuso que su valor sería cero, tal como en este ejemplo: supón que A = B + C. Si luego te enteras de que A = 10 y B = 10, entonces A sigue siendo igual a B más C, excepto en el caso de que C sea igual a 0 y se vuelva innecesaria en la ecuación.
Pero ese no fue el fin de la historia. Esporádicamente, a lo largo de las décadas, los teóricos sacarían a lambda de la cripta para imaginar cómo se verían sus ideas en un universo que tuviera una constante cosmológica. Sesenta y nueve años más tarde, en 1998, la ciencia exhumaría a lambda una última vez. A principios de ese año, dos distintos equipos de astrofísicos hicieron extraordinarios comunicados, uno de ellos estaba dirigido por Saul Perlmutter del Laboratorio Nacional Lawrence Berkeley, en Berkeley, California. El segundo equipo estaba codirigido por Brian Schmidt, de los observatorios Monte Stromlo y Siding Spring, en Canberra, Australia, y por Adam Riess de la Universidad Johns Hopkins, en Baltimore, Maryland. Decenas de las supernovas más lejanas jamás observadas parecían considerablemente más tenues de lo esperado, dado el comportamiento bien documentado de esta especie de estrellas que explotan. La conciliación exigía que esas lejanas supernovas se comportaran de forma distinta a sus compañeras más cercanas o bien que estuvieran hasta un 15% más lejos de lo que los modelos cosmológicos imperantes las habían ubicado. La única cosa conocida que explica de forma natural esta aceleración es la lambda de Einstein, la constante cosmológica. Cuando los astrofísicos la desempolvaron y la devolvieron a las ecuaciones originales de Einstein de la relatividad general, el estado conocido del universo coincidía con el estado de las ecuaciones de Einstein.
Las supernovas utilizadas en los estudios de Perlmutter y Schmidt valen su peso en núcleos fusionables. Dentro de ciertos límites, cada una de esas estrellas explota de la misma forma, encendiendo la misma cantidad de combustible, liberando la misma titánica cantidad de energía en el mismo tiempo, alcanzando así la misma luminosidad máxima. Por lo tanto, sirven como referencia, o candela estándar, para calcular las distancias cósmicas a las galaxias en las que explotan, en los confines más lejanos del universo.
Las candelas estándar simplifican inmensamente los cálculos: debido a que todas las supernovas tienen la misma potencia, las tenues están muy lejos y las brillantes están cerca. Después de medir su brillo (una tarea sencilla), puedes saber exactamente cuán lejos están unas de otras y de ti. Si las luminosidades de las supernovas fueran todas distintas, no podrías usar el brillo por sí solo para saber a qué distancia está una en comparación con otra. Una tenue podría ser un foco de alto voltaje lejano o bien un foco de bajo voltaje cercano.
Todo bien. Pero hay una segunda manera de medir la distancia a las galaxias: su velocidad de recesión de nuestra Vía Láctea, recesión que es parte integral de la expansión cósmica total. Hubble fue el primero en indicar que el universo en expansión hace que los objetos distantes se alejen más rápido de nosotros que los cercanos. Así que al medir la velocidad de recesión de una galaxia (otra sencilla tarea), se puede deducir la distancia de una galaxia.
Si estos dos métodos probados proporcionan distancias diferentes para el mismo objeto, algo debe andar mal. O las supernovas son malas candelas estándar o bien nuestro modelo para la tasa de expansión cósmica medida a través de las velocidades de las galaxias es incorrecto.
Pues sí, algo andaba mal. Resulta que las supernovas eran estupendas candelas estándar que sobrevivieron al cuidadoso escrutinio de muchos escépticos investigadores, así que los astrofísicos se quedaron con un universo que se había expandido más rápido de lo que pensábamos, ubicando las galaxias más lejos de lo que hubiera indicado su velocidad de recesión. Además, no había una manera fácil de explicar la expansión extra sin aplicar lambda, la constante cosmológica de Einstein.
Esta era la primera evidencia directa de que una fuerza repulsiva penetraba el universo, oponiéndose a la gravedad, razón por la que la constante cosmología resucitó de entre los muertos. De pronto lambda adquirió una realidad física que necesitaba un nombre, y así la energía oscura se volvió protagonista del drama cósmico, captando tanto el misterio de su causa como nuestra ignorancia sobre esta. Perlmutter, Schmidt y Riess, justificadamente, compartieron el Premio Nobel de física de 2011 por este descubrimiento. Las mediciones más exactas hasta ahora revelan que la energía oscura es lo más importante del mundo, al ser en este momento responsable del 68% de toda la masa-energía en el universo; la materia oscura comprende el 27%, y la materia normal comprende apenas el 5%.
La forma de nuestro universo cuatridimensional viene de la relación entre la cantidad de materia y energía que vive en el cosmos y la velocidad a la que el cosmos se expande. Una medida matemática práctica de esto es omega, Ω, otra letra griega mayúscula con un buen dominio del cosmos.
Si divides la densidad de la materia-energía del universo entre la densidad de la materia-energía requerida para apenas detener la expansión (conocida como la densidad crítica), obtienes omega.
Dado que tanto la masa como la energía hacen que el espacio-tiempo se deforme o curve, omega nos dice la forma del cosmos. Si omega es menor a uno, la energía-masa real cae por debajo del valor crítico, y el universo se expande por siempre en todas las direcciones, todo el tiempo, adoptando la forma de una silla de montar, en la que las líneas inicialmente paralelas divergen. Si omega es igual a uno, el universo se expande por siempre, pero apenas lo hace. En ese caso, la forma es plana y conserva todas las reglas geométricas que aprendimos en la secundaria sobre las líneas paralelas. Si omega es superior a uno, las líneas paralelas convergen, y el universo se curva sobre sí mismo, volviendo finalmente a colapsarse en la bola de fuego de donde vino.
Desde que Hubble descubrió el universo en expansión no ha habido ningún equipo de observadores que haya medido a omega siquiera cerca de uno de forma confiable. Sumando toda la masa y energía que sus telescopios podían ver, e incluso extrapolando más allá de estos límites, incluyendo la materia oscura, los valores más altos de las mejores observaciones alcanzaron un máximo de alrededor de Ω = 0,3. En lo que a los observadores respecta, el universo seguiría trabajando incansablemente hacia el futuro.
Mientras tanto, a partir de 1979, el físico estadounidense Alan H. Guth, del Instituto de Tecnología de Massachusetts, y otros más presentaron un ajuste a la teoría del big bang que aclaró algunos molestos problemas que impedían obtener un universo lleno de materia y energía como se sabe que es el nuestro. Un subproducto fundamental de esta actualización del big bang fue que lleva a omega hacia uno. No hacia una mitad. No hacia dos. No hacia un millón. Hacia uno.
Difícilmente existe un teórico en el mundo que haya tenido un problema con este requisito, pues ayudó a que el big bang explicara las propiedades globales del universo conocido. Sin embargo, había otro pequeño problema: la actualización predijo tres veces más masa-energía de lo que los observadores pudieron encontrar. Sin inmutarse, los teóricos dijeron que los observadores no estaban buscando bien.
Al final de los cálculos, la materia visible por sí sola podía justificar no más de un 5% de la densidad crítica. Pero ¿qué hay de la misteriosa materia oscura? También la añadieron. Nadie sabía lo que era, y aún no lo sabemos, pero sin duda contribuyó al resultado final. A partir de ahí, obtenemos cinco o seis veces más materia oscura que visible. Pero eso es todavía muy poco. Los observadores estaban desconcertados, y los teóricos respondieron: «Sigan buscando».
Ambos grupos estaban seguros de que el otro estaba equivocado, hasta que se descubrió la energía oscura. Ese sencillo componente, al añadirse a la materia ordinaria y a la energía ordinaria y a la materia oscura, aumentó la densidad de masa-energía del universo a un nivel crítico. Esto satisfizo simultáneamente tanto a los observadores como a los teóricos.
Por primera vez, los teóricos y los observadores hicieron las paces. Ambos, a su propia manera, estaban en lo correcto. Omega sí es igual a uno, tal como los teóricos exigían del universo, a pesar de que no se puede llegar a ello sumando toda la materia, oscura o no, tal como ingenuamente habían supuesto. No hay más materia dando vueltas por el cosmos actualmente que la que antes habían estimado los observadores.
Nadie había previsto la dominante presencia de la energía cósmica oscura ni nadie había imaginado que fuera una gran reconciliadora de diferencias Entonces, ¿qué es? Nadie lo sabe. Lo más cerca que alguien ha estado de saberlo es suponer que la energía oscura es un efecto cuántico en el que el vacío del espacio, en vez de estar vacío, en realidad hierve de partículas y sus contrapartes antimateria. Aparecen y desaparecen en parejas, y no duran lo suficiente para medirlas. Su nombre, partículas virtuales, capta su existencia pasajera. El extraordinario legado de la física cuántica, la ciencia de lo pequeño, exige que pongamos especial atención a esta idea. Cada par de partículas virtuales ejerce un poco de presión hacia afuera mientras brevemente se abre paso a codazos en el espacio.
Desafortunadamente, cuando calculas la cantidad repulsiva de presión del vacío que surge de la corta vida de las partículas virtuales, el resultado es más de 10120 veces mayor que el valor de la constante cosmológica calculada experimentalmente. Se trata de un factor estúpidamente grande, que produce la mayor discrepancia en la historia de la ciencia entre la teoría y la observación.
Es verdad, no tenemos ni idea. Pero no estamos completamente perdidos. La energía oscura no está a la deriva, sin ninguna teoría que la ancle. La energía oscura habita uno de los puertos más seguros que podríamos imaginar: las ecuaciones de la relatividad general de Einstein. Es la constante cosmológica. Es lambda. Sin importar lo que la energía oscura resulte ser, ya sabemos cómo medirla y cómo calcular sus efectos sobre el pasado, el presente y el futuro del cosmos.
Sin duda, la mayor metida de pata de Einstein fue haber declarado que lambda había sido su mayor metida de pata.
Y la búsqueda continúa. Ahora que sabemos que la energía oscura es real, varios equipos de astrofísicos han iniciado ambiciosos programas para medir distancias y el crecimiento de la estructura en el universo utilizando telescopios terrestres y espaciales. Estas observaciones pondrán a prueba la detallada influencia de la energía oscura en la historia de la expansión del universo, y seguramente mantendrán ocupados a los teóricos. Deben redimirse urgentemente por lo vergonzoso que resultó ser su cálculo de la energía oscura.
¿Necesitamos una alternativa para la TGR? ¿Necesita una reestructuración el matrimonio de la TGR y la mecánica cuántica? ¿O existe alguna teoría de la energía oscura que será descubierta por una persona inteligente que aún no ha nacido?
Una característica extraordinaria de lambda y del universo en aceleración es que la fuerza repulsiva surge de dentro del vacío y no de algo material. Conforme el vacío crece, la densidad de la materia y la energía (conocida) dentro del universo disminuye, y la influencia relativa de lambda en el estado cósmico de las cosas se vuelve mayor. Con una presión repulsiva mayor viene más vacío, y con más vacío viene una mayor presión repulsiva, produciendo una aceleración interminable y exponencial de la expansión cósmica.
Como consecuencia, cualquier cosa que no esté gravitacionalmente ligada al vecindario de nuestra galaxia, la Vía Láctea, retrocederá a una velocidad cada vez mayor, como parte de la expansión acelerada del tejido espacio-tiempo. Las galaxias distantes que ahora son visibles en el cielo nocturno, con el tiempo desaparecerán más allá de un horizonte inalcanzable, alejándose de nosotros más rápido que la velocidad de la luz. Una hazaña posible, no porque estén moviéndose en el espacio a esas velocidades, sino porque la estructura del universo mismo las lleva a tales velocidades. No hay ninguna ley de la física que impida esto.
En alrededor de un billón de años, cualquier persona viva en nuestra galaxia podría no saber nada sobre otras galaxias. Nuestro universo observable apenas comprenderá un sistema de estrellas cercanas y longevas dentro de la Vía Láctea. Y más allá de una noche estrellada habrá un interminable vacío, oscuridad frente al abismo.
En última instancia, la energía oscura, una propiedad fundamental del cosmos, pondrá en peligro la capacidad de futuras generaciones de entender el universo que les tocó en el juego de cartas. A menos que los astrofísicos contemporáneos de la galaxia mantengan registros extraordinarios y entierren una impresionante cápsula del tiempo de un billón de años, los científicos posapocalípticos no sabrán nada sobre las galaxias —la principal forma de organización de la materia en nuestro cosmos—, y por ende se les negará el acceso a las páginas clave del drama cósmico de nuestro universo.
He aquí mi pesadilla recurrente: ¿Acaso a nosotros también nos hacen falta algunas piezas básicas del universo que alguna vez fuimos? ¿qué parte del libro de historia cósmica ha sido marcada con «acceso denegado»?, ¿qué sigue faltando en nuestras teorías y ecuaciones que debería estar ahí y que nos tiene buscando respuestas a tientas que tal vez nunca encontremos?
Neil deGrasse Tyson
Astrofísica para gente con prisas